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Abstract. In this work we introduce a task classification model for soft real-time
systems. Task processes are analyzed as probabilistic distribution functions which
parameters are considered as stationary random variables over the long time. We
present a technique for tasks classification based on the maximum entropy level
as element of differentiation among tasks. The classification model is described
and evaluated based on probabilistic distribution functions properties.

1 Introduction

In computer systems, the term “tasks” is referred to those processes which are exe-
cuted in servers whose perform a specific action. Tasks are software entities that aim to
respond to the information generated by Real-time systems; peripheral devices or inter-
nal processes [1]. In applications with explicit timing constrains and logical correctness,
tasks completion algorithms that accomplish these requirements has been purposed in
many works. Tasks scheduling involve certain knowledge of tasks characteristics. Since
its earliest definitions, tasks have been classified as: periodic, semiperiodic, aperiodic
or sporadic for various authors according the analysis context [1],[7], [8], [16]. In most
of cases, task classification is established priory. Periodicity in generated events mark a
classical division among tasks types.

Scheduling in real time systems concerns the determination of a temporal ordering
of tasks within constraints of some specified timing, precedence and resource require-
ments. Depending on the nature of the application, scheduling may be classified into
different kinds: static scheduling, dynamic scheduling and mixed scheduling [8].

Static scheduling assumes prior knowledge of the relevant characteristics of all
tasks, which may be taken into account in scheduling. When this information is avail-
able priority ordering is assigned to tasks. However, any change in tasks requires the
complete rescheduling. On the other hand, Dynamic scheduling algorithms are designed
to work with unpredictable arrival times of tasks and possible uncertainties in their ex-
ecution times or deadlines; priority assignation is done in line; that is, tasks priority is
assigned at the task arrival time.

Assign priority ordering only have sense when tasks are preemptable. A task is
preemptable by other task with higher priority if it can be interrupted and resumed later
meanwhile its overall goal can be achieved. In dynamic scheduling algorithms, tasks
assigned priority vary over time from request to request, but in a statistical way the
priority tasks ordering remains the same.
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Tasks priority ordering depends mostly on real time constraints; such as arriving
time or deadline. Scheduling based on priority ordering aims to deal with these con-
straints optimally. In dynamic priority scheduling algorithms, where tasks characteris-
tics are known at the time they arrives, statistical knowledge of their process is required.

In stationary systems which maintain its characteristics over long time, it is pos-
sible to determine some tasks performance information based on their statistics. Tasks
process outcomes can be described by density distribution function with defined param-
eters. Probability does not say much about individual events, but describes a faithfulness
level of task predictability. Meanwhile tasks processes repeat during an infinite num-
ber of times. Some of these relevant variables are: incoming channel, inter-arrival time
or period, relative deadline and, computations or communications streams. Here tasks
processes are considered stochastic stationary processes with defined probability dis-
tribution function; likewise task statistical behavior can be described. In soft-real-time
systems, it is statistically required that task processes be completed in their deadlines.
This means that a statistical distribution response time service is acceptable.

While the system evolves in time, tasks knowledge increases. A measure of amount
of uncertainty can be represented in probability with the maximum entropy. That is, the
information is more informative kind, if it consists of mean values of task variables.
Therefore, the analysis of tasks processes estimate a measure of the degree to which a
system is schedulable. One such measure is the task classification on maximum entropy
level what is the focus of this work.

The purpose of this paper is introducing a scheduling theory based on tasks contin-
uous stochastic processes for soft-real-time systems. Our aim is give an entropy based
classification for tasks treatment. As well as task classification is generated while the
process evolves. Tasks classification helps us in scheduling algorithms based on tasks
characteristics.

2 Preliminaries

In this section, we define task functions as continuous time stochastic processes. This
approach let us to handling any kind of task; where periodicity in task time arrival
becomes a density distribution function. Based on M/M/1 queueing theory [4], tasks
time constraints; arriving and deadline time are independently assigned according to a
probability distribution. Next assumptions are made in order to simplify out model, but
they can be treated in future works.

1. An task becomes a active an instant after it arrives.

2. All tasks are preemptive and overhead are depreciable.
3. Deadline is result of arrival time and calculus time.

4. Start time, lateness and precedence are considered nulls.

Let the tuple (£2, F, Pr) be the probability space that describe task process. The 2
set throws outcomes out during the sample time. Here F is the set field in 2. Then Pr
is the probability measure function in this space. Tasks constraints are random variables
generated by a random variables family whom are none decreasing in time [9], [10].
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Definition 1. (Real-time Task). A real-time task is a stochastic process described by
m{A(t,w), I(t,w), D(t,w)} € F, characterized by the random variables family A,1
and D defined in the probability space (£2, F,Pr) with teT t > 0, and w C (2.

Definition 2. (Arrival Time). The arrival time is a stochastic process {A(t,w)} € F
defined as the required waiting time to observe an arrival occurrence when this out-
comes at rate \ time units, is described by an exponential density function.
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At,w) = 3¢ 0

A(t,w) >0

Definition 3. (Tusk Information). The information contained in tasks that will be exe-
cuted according o server performance is a stochastic process {1(t,)} € F described
by an normal density function.
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Definition 4. (Deadline). The time when a task must finish its service is a stochastic
process {D(t,)} € F described by the sum of A(t,w) and I(t,w); D(t,w) = A(t,w)*
1(t,w) Thus the normalized Deadline distribution function is defined by
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D(t,w) >0

Task information is taken as the time unit to determine the calculation time. Based
on the calculation time is a product of the task information and a constant of process
capability of the system. So that, in following developments theses will be teated as
synonyms. As independent random variables, the deadline process is the sum of the
arrival time and the task information or calculation time.

3 Maximum Entropy Principle

In 1948 Claude Shannon [14] published his theory of communication; where he derives
a measure of uncertainty denoted entropy. Referring to some system with certain physi-
cal or conceptual entities, the messages they produce have meaning. Shannon proposed
a measure of how much information is ’produced” by such a process, or better, at what
rate information is produced.

The measure H(p;, pe, ..., pn) Of a set of possible events whose probabilities of
occurrence are py, pg, ..., Pn. The entropy is the measure function of the uncertain of
an event outcome. It is reasonable to such a measure to require of it the following
properties:

1. H should be continuous in the p;.
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2. If all the p; are equal, p; = 1/n then H should be a monotonic increasing function
of n. With equally likely events there is more choice, or uncertainty, when there are
more possible events.

3. If a choice be broken down into two successive choices, the original H should be
the weighted sum of the individual values of H.

Definition 5. (Entropy). The only function H that satisfies the three above assumptions
is of the form:

H(p1,p,-spn) = —K > pilogp; 4
i=1

The form H = Y p; log p; is recognized as entropy for probabilities p; because of
the mathematical similarity with the thermodynamical definition of entropy. Typically,
K is taken as unity and the logarithm either in base 2 or Napierian (natural) base. In an
analogous manner the entropy of a continuous distribution with the density distribution
function p(z) is given by:

oo
H@) =~ [ plo)logpla)da )
— 00
For task processes with known density distributions; mathematical maximization
techniques like Lagrange multipliers are used to determine a measure of certainness for
continuous random variables based on the maximum entropy principle.

Theorem 1. (Maximum task arrive entropy). Lets A(t,w), t > 0, be the arrival time of
a task, subject to the following constraints:

1 [ A(t,w)dt =1
2. 7 tAtw)dt )\for)\>0
3. H(A(t,w)) = — [y A(t,w) log A(t, w)dt

The maximum entropy for A(t,w) variable with pre-specified first moment in [0, 00)
is H; v given by
H(A(t,w)) = log Ae (6)

Proof. In stochastic sense, the arrival time function A(¢, w) is defined as an exponential
type function, [4] and [6]. Using the method of Lagrangian multipliers, the density dis-
tribution that satisfies the constraints 1) and 2), is the one described in DEF 2. The asso-
ciated maximal entropy is then obtained by H (A(t, — OOO —xt log %e* St =

In\ [7° LemXtdt + + [ LemXtdt H(A(t,w)) = ln)\—i— 1

Theorem 2. (Maximum task deadline entropy). Lets D(t,w), t > 0, be the deadline of
a task, subject to the following constraints:

1. [ D(t,w)dt =1
2. 7 tth)dt Afor A >0
3. HD(t,w)) = — [;° D(t,w)log D(t,w)dt
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the maximum entropy for D(t,w) variable with pre-specified first moment in [0, c0)
is H; ar given by
H(D(t,w)) = log Ae (7

Proof. Deadline defined by the convolution between task information and arrival time
distribution functions where D(z,w) = [*_A(t,w)I(x — t,w)dt normalized is con-
sidered. Thus, the density distribution that satisfies the constraints 1) and 2), is the one
described in DEF 4. The associated maximal entropy is then obtained by H(D(z,w)) =
— [;° D(z,w)log D(z,w)dt, this yield H(D(z,w)) = InA + 1

4 Maximum Entropy Tasks Classification

In previous section we establish a probabilistic criteria for task classification in dy-
namic algorithms, according with tasks temporal constraints. As in firsts works in the
area, periodicity and deadline constraints have been considered bases on task planning
algorithms.

A main task property is the period. In Liu and Lyland pioneer analysis, [7], the
length of successive tasks is a constant called period 7'. A periodic task is said to have
a regular release time, or it is regular time triggered. If a task does not accomplish with
this criteria is called a nonperiodic or sporadic task. Task periodicity plays a relevant
role in scheduling algorithms because of the assumptions considered in its analysis; in
order to have the expected results [5]. Periodicity is considered as a measure of task
order timely speaking. A higher hierarchy task corresponds a higher periodicity task.
What is defined by the task arrival distribution function.

Deadline property is considered in dynamic scheduling as the EDF algorithm [15].
By means of the processor utilization factor, task priority is selected by the absolute
deadline. Tasks with earlier deadlines will have higher priorities.

Definition 6. (Hierarchy in Probabilistic Sense). Let Jyy = J(w(t,w)) be the task
parameter assigned that describes the relative importance among tasks in the system

| H(A(t,w))
J(m(t,w)) = min { H(D(t,w)) 3)

Theorem 3. (Tasks Hierarchy based on Maximum Entropy). Lets m;(t,w) be a task
process with arrival time A;(t,w), I;(t,w) and D;(t,w). Task hierarchy of J; s respect
to Jj v according with the maximum entropy principle is established by

J@M > Jj7M ifand only lf H@M < Hj,M )

Proof. Results of THEO 1 and THEO 2 relate maximum entropy measure with the
distribution density mean for the task parameters under consideration. Accomplish with
inequality H; ps < Hj ps give the hierarchy inequality
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5 Simulation Results

Assigning hierarchy to task processes is a first step in task planning due to the relevance
of classify tasks in dynamic scheduling algorithms. That is, while tasks arrive and we
have enough information about their probabilistic parameters, we are able to distinguish
those tasks that must be served first from the others.

A simulation algorithm for task classification using the maximum entropy principle
is presented. Here we take tasks arriving time samples from whom we observed their
statistical parameters during the simulation time. With the first probability moment val-
ues we applied the classification based on maximum entropy principle in order to give
them a relative hierarchy giving an order of tasks to be processed by the server.

In Figure 1 a simulation outcome is showed. Here, the simulation algorithm is tested
for three tasks with different first probability moments which arriving task density dis-
tribution are stationary. Moreover, the tasks classification is presented for these task
samples giving them a priority value in function of maximum entropy certainness mea-
sure.

Task Entrapy Simulation

Hierarchy

Fig. 1. A tasks classification simulation outcome

We observe from the tasks hierarchy values for figure 1), that while the simulation
time evolve; these values remains unchanged because of the information gathered from
tasks.
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Summary and Conclusions

In this paper the priority rule problem for task planning is treated. Assigning priority to
tasks based on the maximum entropy principle let us deal with tasks with differences in
their statistical parameters. The technique presented here is applied to not only periodic
tasks but aperiodic tasks also. A remarkable result of this work is the classification
method, in relation with tasks periodicity and deadline constraints is a similar manner.

Based on the maximum entropy level as element of differentiation among tasks,

this theory gives a continuous analysis in task planning processes. We have modeled
soft real-time systems as tasks processes with stationary distribution functions. This
analysis establish the basis for scheduling algorithms future works.
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